可持续理念下的既有建筑改造设计策略研究

王 晟

(上海易璟规划建筑设计中心,上海 201805)

摘要:城市的景观规划和设计是衡量城市文明水平和经济实力的重要指标,同时可以反映该地区的文化 背景。许多城市的建筑已经年代久远,失去过去的美丽,但仍然具有重要的历史价值和文化意义。鉴于当前 城市发展趋势以及老旧建筑的破损程度,重新设计这些建筑成为值得深入研究的课题。

关键词:可持续理念;既有建筑;改造设计;策略

中图分类号: TU201.5 文献标志码: A

资源的可持续利用不仅是经济发展的基础,而且 是实现可持续发展的关键因素。在进行建筑改造时, 必须充分利用自然资源,实现循环利用,同时要尊重 和保护不可再生的珍贵资源。为保护环境,应该鼓励 公众使用可再生资源,并加强对其进行改造和提升, 使其具有多次重复使用的潜力。应开展科学设计和施 工,尽量避免浪费自然资源,尽量优化建筑的功能, 避免对自然环境产生破坏。

1 可持续理念下的既有建筑改造设计概述

1.1 改造既有建筑体现可持续建筑原则

对既有建筑进行改造,不仅可以节约土地资源,减少大量建筑垃圾的产生,而且可以使废弃的建筑得到重新利用,从而有效减少新建筑项目的盲目开发。对既有建筑进行改造,不仅可以大幅降低成本投资,而且可以缩短施工时间,有利于环境资源的可持续利用,还能为社会带来更加完善的公共设施和更加成熟的社区环境^[1]。

1.2 既有建筑改造中的原则与难点

第一,在对现有建筑进行改造前,必须对其进行全面评估,这将消耗大量人力、物力和时间。在改造过程中,应该尊重建筑设计者的设计理念,同时确保不会偏离原有的建筑风格。第二,在对现存建筑物进行改造时,必须确保施工方式与技术水平完美契合,这就需要设定更加严格的限制,确保施工顺利实施。同时,由于技术的局限性,施工过程可能变得更加复杂。第三,在对既有建筑进行改造时,面临一些

棘手的挑战,比如如何在保留其历史价值的同时,能 充分发挥其功能,这些挑战体现旧建筑再利用的复 杂性。

1.3 既有建筑改造的类型

所有建筑项目都需要经历一系列步骤,从原材料开采、加工和运输到施工、使用和维护,再到再利用、拆除,最后回收循环,这些步骤之间存在密切关联。对现存建筑进行重新设计,可以在很大程度上保护其价值。重点研究建筑的后半部分,根据其生命周期,可以将既有建筑改造划分为三类:一是基础设施的改造,二是技术改造,三是环境改造。对既有建筑进行维护改造,保持其功能不变,对其进行置换,以实现再利用,对其拆除后,进行再循环改造。

1.4 旧城改造的必要性

由于经济快速增长,传统的城市结构已无法满足现代社会的需求。城市规划应充分考虑时代特点和城市个性^[2]。随着社会发展,人们对生活质量和精神层面的要求都在不断攀升,当今居民对日常生活和休闲娱乐的需求提高,导致过去的城市建筑和景观无法满足其需求,希望能有更多的空间进行业余文化活动,以此提升自身精神层面。随着经济的飞速发展,新的社会中心和交通网络不断扩张,以及各项基础设施日益完善,这些都为旧城的改造提供强有力的支持。改造旧城区是经济发展的必要条件,开展合理规划,可以提升城市的魅力,增强城市的经济实力,促进城市实现可持续发展。由于地域差异,经济发展水平同样

存在差异,因此,城市必须努力创造满足当地发展需求的完善的城市环境。为促进城市经济实现可持续发展,城市规划应重新审视原有的经济环境,拓展更多的经济发展空间,实现旧城的改造升级。

2 可持续理念下既有建筑改造的设计方法

2.1 建筑节能技术

为提高建筑物的保温性能,应该对外墙、屋顶和门窗进行改进,加强其气密性。另外应该重视建筑物的通风性能。随着新型保温材料的不断发展,外墙外保温技术已经取得显著的成果,旧门窗可以采用新型节能塑钢产品替代,从而大幅提高建筑的节能效果。为提升建筑供暖系统的效率,对旧锅炉进行改进或更新。新锅炉通常具有良好的性能,不仅维护和管理成本低、热效率高,而且污染性较小。此外,在供热管网改造过程中,应重视热损失问题,使用先进的保温材料,同时结合收费制度的改革,将室内供暖系统改为分户计量,以便更好地反映每个家庭的实际消耗热量,并鼓励家庭自觉节能。

2.2 可再生能源利用技术

太阳能已经成为一种可持续发展的清洁能源,并在全球范围内得到广泛应用。这种系统具有造价低、使用寿命长、安装简单等优势,可以大幅提高既有建筑的节能效果,因此应得到广泛推广^[3]。随着欧美国家风能发电技术的不断完善,其已经被广泛应用于各个领域。尤其是在边远地区,风能发电系统更是受到青睐,不仅可以满足当地居民的日常需求,而且可以节省大量远程供电设施的建设和维护费用。

2.3 绿色建筑材料及技术

在进行建筑改造时,应该尽量采用绿色建筑技术和材料。这些材料不仅能实现可持续发展,而且能重复使用,因此,产生的建筑垃圾以及对环境的破坏和污染都非常小。目前,土坯结构在广大农村地区的新建建筑中,具有成本低廉的优势,一方面,可以免费使用黏土,只需要制作土坯,不必烧砖,从而节省能源。另一方面,超出使用年限后,黏土可以回归大自然,实现生态环境的可持续发展。同时,土坯建筑具有施工简易、结构紧凑、耐高温、适宜单层使用的特点。钢结构具有承载能力强、抗震性能高等优势,而且废旧钢材可以再生利用,有助于绿色环保,施工简单方便,可以实现工业化、标准化的大规模生产,而且受气候影响较小。

2.4 智能建筑技术

利用先进的智能建筑技术,可以实现对室内温度、湿度、光照强度、空气流动和室外遮阳等环境因素的精确控制。在传统的建筑技术中,人工控制室内环境气候常常导致过量或不足,以及缺乏及时响应。智能技术的应用可以有效降低建筑成本,同时可以为用户带来更加安全、舒适的室内空间。

3 既有建筑改造设计现状

与发达国家相比, 我国在节能建筑方面起步较 晚,近年来,经过不断探索和深入,已取得可喜的成 果,但仍存在许多挑战,需要进一步加以改进和完 善。第一,由于缺少科学的理论支撑,目前尚无针对 绿色改造的明确标准, 因此对现存建筑的绿色化改造 仍然存在诸多不足。第二, 当前缺乏完善的技术和评 估体系满足其能源储备及既有建筑的功能要求,发达 国家的先进技术和评估体系无法满足这些要求, 如果 盲目地照搬,可能导致严重的后果。第三,目前存在 大量非"绿色"、高能耗建筑,这些建筑的使用功能 不完善,居住环境恶劣,能源消耗较大,因此,迫切 需要进行绿色化改造, 改善当前居住环境, 提高居民 生活质量。第四,考虑既有建筑受到诸多外部限制, 例如朝向、使用功能、结构体系等, 因此必须采取更 加灵活的改造措施,以此满足不同的需求。第五,由 于各地气候差异较大,建筑技术要求存在差异。因 此,应该加强对建筑的适应性评估,并制定针对不同 地区的改造方案,确保满足当地需求。

当前,建筑改造受到一定制约,主要集中在单一的技术改进上,例如:在墙壁上增加保温材料、对屋顶进行平整和斜坡处理、对采暖和供热进行分户计量、对给排水系统进行改进等。由于缺乏系统性的绿色改造方案,相关技术标准存在明显专业分割,从而使改造后的试验结果无法达到期望水平,同时,由于分工合作不当,导致大量人力资源浪费。为满足城市发展的需求,应制定符合行业发展的绿色改造计划,确保既有建筑的功能、结构、人体舒适性和能源使用效率,同时为绿色改造的实施提供参考。

4 可持续理念下的既有建筑改造设计策略

4.1 建筑功能改造

由于城市的快速发展,现存的建筑物已无法适应 当前的需求,因此需要对其进行重新设计和改造^[4]。改 造涉及各个方面,因此必须采取适当的方法。改造功能可能带来一些特殊的挑战,因此需要采取具体的策略和方法解决这些问题。为节省成本,应该在进行功能置换时,尽量选择与原建筑相匹配的新功能。借助这种方式,既可以保留原有的建筑结构,又可以减小对现有建筑的改造,从而降低施工难度,并节省人力和物力。在重新利用旧建筑时,应将舒适的居住环境和条件作为首要考虑因素,从而满足可持续发展的基本需求。确保现存建筑的外观和结构完好无损,并对其功能进行全面优化,将大大提升现存建筑的环境友好和节能效果。重新设计和改造原有的建筑,可以为建筑注入全新活力,同时可以在满足当前使用需求的前提下,发挥更大的作用。

4.2 建筑外形改造

改造建筑的外观通常与其功能相关,可以采用修 复、重塑和结合等方式。采用修旧如旧技术,可以保 留原有建筑的特色,同时能更好地展现建筑原有的美 感。因此,在进行建筑外观改造时,应该从多个角度 入手:第一,应对现存建筑的特征、建成时间、材 料、施工技术等进行细致研究,以便为未来的改造提 供可靠的技术支持。在实际操作中, 应该努力维护那 些相对稳定的建筑,确保历史真实性,同时保持它们 的原有外观。此外,还要尽量保留那些能反映某个时 期建筑的特征。一些长期未维护的建筑物,如果仍然 具有实际使用价值,就应重新保留外观,并延长使用 寿命。第二,明确改造目标。建筑的发展历程应按照 其使用需求划分为若干个不同的阶段。除那些具有重 要历史意义的建筑, 日常所见的部分建筑都是以实用 性为主。因此, 应允许根据不同的功能和使用方式而 发生变化, 以便呈现全新的样貌。第三, 为满足新的 需求,需要精心制定完善的改造方案,以便更好地满 足当前的需求。采取多种改造策略,以此满足不同的 功能和部件需求。例如,可以采用当前的材料和技术 取代原有的位置,或者利用局部改进提高适应性,比 如使用节能门窗,尽可能保护它们的美学和建筑学价 值。采用先进的技术和工艺,重新组装和修复那些不 再需要或已经损坏的建筑元素,例如独特的地方风格 和建筑技术。为保护原有的建筑,应采取一系列措施 进行修复,包括但不限于替换被污染的外墙和地面材 料,以及采取局部修补和清洁的方式,这些措施主要 根据每个建筑的特点而定。

4.3 建筑技术改造

对建筑进行技术改造,可以显著提高其使用寿 命,同时带来更多经济和文化价值。保护和传承地域 文化,可以避免当前城市建筑风格单一、缺乏多样性 的局面。采取多种改造策略, 可确保建筑物满足当前 的使用需求,采取有效的技术改造方案实现该目标。 为实现建筑技术的有效运用、提升其科学性、实现节 能减排、提高经济效益,必须采取有效措施。第一, 对现存的建筑进行耐久性和安全性的重大改造,以此 满足其使用寿命的要求。随着当前社会的发展, 经济 和技术的进步,这些建筑物的性能已经无法满足当前 的使用要求,因此,必须采取有效的技术措施,对其 进行加固和改造,以确保其安全性。第二,利用先进 的科技手段和设备,大幅提高建筑物的舒适度。例 如:采用先进的电器照明系统,实现节能,借助智能 化设备的应用,可以充分发挥当前社会的科技作用; 空气调节设备的采用,则可以提升改造完成后建筑的 舒适度和节能性,从而更好地满足人们的需求。第 三,应大力推广使用节能环保材料。这些材料既安全 又环保,而且可以提供更高的性价比,同时可以应用 最新的技术和材料取代传统的结构部分。太阳能利用 技术既具备实际可行性和经济性特征, 又能减小结构 的负荷,增强防火安全性,提升施工质量,缩短施工 时间,有效发挥多种优势。

5 结束语

当今,对现存建筑进行改造受到社会各界的广泛 关注,同时已经成为当今建筑业的重要趋势。采取适 当的策略和技术手段,可以为保护环境、促进经济增 长和实现社会可持续发展做出重要贡献。合理的改造 和循环利用现有建筑,不仅可以节约资源、降低成 本,而且能传承和发扬文化和历史的精髓。

参考文献

- [1] 王晓苛.浅谈既有建筑改造电气设计[J].江西建材, 2021 (12):125-126.
- [2] 孙畅.既有建筑改造更新设计策略[J].中华建设, 2020(6):120-121.
- [3] 蒋瀚超.既有建筑改造的轻型化设计策略研究[D]. 重庆: 重庆大学, 2020.
- [4] 咸歆磊,王剑涛.既有建筑改造设计中生态节能适宜技术的应用[J].青岛理工大学学报,2018,39(3):70-73.