影响铝模混凝土表观气孔问题的主要工艺因素 探讨

杨馥菀

(广西建工第五建筑工程集团有限公司,广西 柳州 545000)

摘要:在建筑施工技术不断发展过程中,各种各样先进的施工方法被广泛应用。应用铝制模板已经成为混凝土浇筑成型的主要方式,但在铝模混凝土施工过程中,所产生气孔会导致建筑工程使用寿命大幅度下降,会产生一系列安全问题。基于此,本文简要介绍混凝土表面产生气孔的危害,分析铝模混凝土气孔产生原因,同时提出减少气孔数量的策略。

关键词:铝模混凝土;表观气孔;工艺;因素探讨

中图分类号: TU528 文献标志码: A

近年来,我国经济高速发展,人民生活水平大幅度提高。在这一大背景之下,各类建筑工程的规模及数量在不断扩大。随着建筑施工技术的不断发展,铝模逐渐取代木模成为混凝土浇筑成型模板的主要方式。但在施工过程中有关人员发现,铝模成型混凝土表面会存在大量气孔,严重影响表观质量,同时会影响混凝土的耐久性。研究铝模混凝土表观气孔问题具有重要意义,有助于让建筑行业适应发展需求。

1 混凝土表面产生气孔的危害

在混凝土成型过程中,涉及众多环节,同时会受到施工材料、施工工艺等多方面影响,导致混凝土表面产生一些较大的气孔。有关机构研究显示,强度等级较高的混凝土外表更易形成气孔。如果气孔数量相对较少,则不会对建筑物产生根本性的影响,但如果气孔数量极多,则会严重影响建筑物使用寿命,甚至在某种程度上威胁建筑使用者的安全。有关研究机构对混凝土表观气孔产生的危害进行深入分析以及研究,得出一系列结论,对不断提升建筑物整体质量意义重大[1]。研究人员在研究中发现,混凝土表面的气孔过多很容易降低混凝土整体强度。同时气孔体积普遍较大,会减小混凝土的断面体积,直接导致混凝土密实程度大幅度下降,严重影响混凝土整体结构的使用寿命,同时不利于下一道施工工序开展。除了降低

混凝土结构强度之外,大量气孔很容易降低混凝土的 耐腐蚀性能。根据混凝土结构的实际特点,在混凝土结构中存在大量钢筋,混凝土结构可对钢筋起到保护 作用。但如果混凝土结构出现大量的气孔,则在一定程度上减小了钢筋保护层的有效厚度,同时加速混凝土表面碳化的过程。混凝土结构耐腐蚀性的降低,将对建筑工程施工质量产生直接影响,在维修过程中要消耗大量的经济成本,不利于建筑工程施工企业的长远发展。另外,过多的气孔会影响混凝土结构的美观性,降低建筑物使用者的满意程度。

整体上来看,混凝土结构中存在的气孔对建筑物有一定程度的危害,不利于建筑工程施工企业树立良好的社会形象。对这些气孔,建筑工程施工企业有关方面应高度重视,并认真分析气孔产生的具体原因,同时采取有效措施及时解决,确保建筑工程整体质量。

2 铝模混凝土表面产生气孔的原因

2.1 模板方面的原因

在运用铝模混凝土浇筑成型时,需要使用大量的铝制模板,同时要采取有效措施对铝制模板进行封闭。部分建筑工程施工企业在施工过程中会采用一些特别的施工工艺,使铝制模板封闭过严,直接导致模板表面排气困难。混凝土结构中的气泡仅能从结构顶部排出,无法从模板表面散去。过大的压力会使铝模

混凝土结构表面出现大量气孔,影响整体结构质量。 同时在铝模板使用过程中,表面会留存一定数量的杂质,这些杂质直接导致气泡的排出过程受阻,很容易出现粘连现象^[2]。

从另一个角度来看,现阶段在铝模板应用过程中,建筑工程施工企业很难保障铝模板施工工艺合理性,也很难保证其整体质量,因此会出现大量的混凝土气孔。对这一现象,技术人员应高度重视,避免过多数量的气孔影响整体结构的安全性,同时也要采取有效的措施,进一步减少气孔的数量以及体积,为延长建筑物使用寿命奠定坚实基础。

2.2 施工工艺方面的原因

在铝模混凝土施工过程中,需要使用一定数量的 脱模剂。部分施工人员在脱模剂使用过程中,并未严 格遵循有关操作流程,导致脱模剂涂刷不均匀。同时 如果所使用的脱模剂润滑程度相对较差,则不能保障 混凝土在浇筑过程中气泡可以及时排出,以致最终形 成体积较大的气孔。在混凝土浇筑过程中,如果不能 根据施工现场具体情况采用合理的浇筑措施,就会导 致混凝土结构分层厚度不合理,很难让混凝土气泡及 时排出。在混凝土振捣环节,如果插入间距过大,同 时振捣时间相对较短,也很难让气泡及时排出。除此 之外,在混凝土运输过程中,涉及很多方面,由于混 凝土坍落程度较大,在运送至施工现场时早已粘连在 一起,影响气泡的排出。

2.3 施工材料方面的原因

在混凝土浇筑过程中,需要使用数量较多的外加剂,如果在使用外加剂的过程中不能采取有效措施,则会直接导致结构中的气泡数量大幅度增加。比如:现阶段施工人员在使用引气剂以及减水剂的过程中,并未严格按照操作流程操作,直接导致混凝土施工性能大幅度降低。如果在振捣过程中没有采取有效措施,最终会使气泡汇聚至混凝土表面,形成体积较大的气孔。同时由于水泥的使用量相对较大,在一些环节,即使添加引气减水剂,但由于混凝土的黏滞阻力仍然无法被降低,振捣时间不足,最终导致气泡很难被带出。特别值得注意的是,铝模混凝土施工受季节因素影响较大,在冬季施工时,需要添加大量的水泥以及混合料,致使结构内部气泡很难排出。除此之外,在铝模混凝土施工过程中,很容易发生骨料级配不合理情况,也会导致其表面产生大量的气孔。

从目前情况来看,铝模板密闭性较强、脱模剂涂 刷过程不当、人工振捣操作不合理等多方面原因都会 使混凝土表面产生大量气孔,建筑工程施工企业应对 这些原因进行深入的分析以及研究,找到减少气孔体 积及数量的方法,为建筑工程适应发展需求提供有力 支持。

3 减少铝模混凝土表观气孔数量的策略

3.1 对原材料严格把关

在铝模混凝土施工过程中,涉及数量众多的施工材料,每种施工材料都有其特定的作用。因此建筑工程施工企业应根据施工现场的具体情况,对每一种施工材料进行严格把关,首先要保障施工材料的质量符合国家有关标准,坚决禁止不合格施工材料进入施工现场,对违反操作流程的工作人员,应在第一时间追究责任。同时要对骨料的大小以及针片状颗粒含量进行深入研究,在备料过程中做好各个环节的工作,同时考虑相应的施工标准。根据相关经验,在细骨料级配过程中尽量选择中砂,在粗骨料的选择过程中尽量选择卵石,通过合理的配比,最大限度地降低混凝土中的气泡含量,避免过多气泡对整体结构产生不良影响^[3]。

3.2 采取有效措施,控制混凝土拌和质量

为进一步降低铝模混凝土施工过程中混凝土结构 表面产生的气孔数量,在混凝土搅拌施工过程中,施 工人员应高度重视,要严格按照设计方案执行,同时 要对配合比进行深入研究。在实际配料过程中, 应采 取专业化的设备,对砂石中的含水量进行测量,同 时根据设计的配合比进行调整,确保所配制出的混凝 土满足具体的施工需求。在混凝土中添加掺和料以及 引气剂,有助于提升混凝土结构的整体强度,在这一 过程中,施工人员应做好各类控制工作,要检查添加 剂质量,同时严格按照设计要求进行取料。在水灰比 控制方面,设计人员以及施工人员都应高度注意,要 考虑施工现场的含水量,根据施工现场的含水量不断 调整用水量,确保水灰比满足实际使用需求。在混凝 土制备完毕后,应对混凝土坍落度进行检验,通过检 验确保混凝土结构符合设计标准。整体来看,混凝土 拌和过程对产生气孔的数量有直接影响, 在这一过 程中,建筑工程施工企业各个方面都应高度重视,既 要引进先进的施工工艺, 又要考虑施工现场的具体情 况,对各种施工材料合理控制其比例,通过合理搭配 不断提升混凝土结构强度,将混凝土结构中的气泡尽 可能排除。对各个环节的不断优化,能进一步提升施 工质量, 让铝模混凝土施工技术在建筑工程施工领域 拥有更大的施展空间,同时能使企业节约经济成本以

及树立良好的品牌形象,对建筑行业的长远发展意义 重大。

3.3 做好模板安装及清洁工作

有关机构的试验研究显示, 在低温环境下混凝土 板中的气泡很难及时排出,对整体结构的强度有一定 的影响。因此,在冬季施工时施工人员可以考虑采用 轻机油脱模剂。在脱模剂的选择过程中,尽量选择水 性或者树脂类脱模剂, 以达到有效消除混凝土结构 表面气泡的目的。在脱膜剂涂抹前,施工人员应高度 重视,可以考虑用小砂轮清理钢模板上的浮锈,在浮 锈清理完毕后,继续用抹布将表面擦拭干净。在上述 工序完毕后,施工人员应利用棉纱进行开油,对模板 的接缝处应格外重视,可以采用铺垫海绵条的方法进 行处理,避免发生漏浆现象。如果在施工过程中水泥 浆溅到模板表面,或者因其他原因导致模板上存在杂 物,应及时进行处理。在施工人员浇筑完一层混凝土 后, 应采取有效措施, 将模板上的污迹擦拭干净, 保 障混凝土表面的光洁程度,同时能减少气孔或者气泡 的数量。整体来看,在施工过程中施工人员的一系列 行为对减少铝模混凝土表面气孔的数量至关重要,施 工人员在各个环节都应秉持认真负责的态度,对每个 过程都应认真考虑,根据现场具体情况采取相应的处 理措施[4]。

3.4 做好混凝土的振捣工作

混凝土的振捣工作对工程整体质量至关重要,在 振捣工作进行过程中, 建筑工程施工企业各个部门之 间都应密切配合,加强对施工环节的监督以及管理。 借助振捣工作,可不断提升混凝土结构的密实程度, 避免结构在使用过程中发生重大安全生产事故。在 混凝土浇筑前,施工人员应全面检查钢筋的位置以及 保护层的厚度,在确定钢筋位置正确以及保护层厚度 符合国家有关标准后,进行下一项施工环节。在这一 过程中要根据实际情况,检查垫块是否按要求固定完 毕。值得注意的是,如果混凝土自由倾落高度超过 2 m,则应考虑运用串筒或者溜槽进行下调,以避免混 凝土发生离析现象。在控制振捣的过程中,施工人员 要注意力度的选择。建筑工程施工企业方面可以根据 具体情况选择具有丰富经验的振捣员。在振捣工作进 行过程中, 可以通过反复试验确定最佳振捣时间, 要 确保混凝土不再显著下沉,确保混凝土不再出现大量 气泡,混凝土表面要呈水平状态,边角混凝土也要充 实填满[5]。在施工过程中,施工人员要分析气泡的成 因,同时根据气泡的成因找出解决的办法。特别值得

注意的是,在很多情况下,气泡产生的原因并非单一的,因此解决问题的方法要根据施工现场的具体情况决定,在消除气泡的过程中,要综合考虑各类因素,不能对整体施工过程产生较大影响。

3.5 加强对施工人员的培训力度

施工人员的实际素质,对减少气孔与气泡数量至关重要。部分建筑工程施工企业为节约经济成本,在铝模混凝土施工过程中并未选用高素质的施工人员,直接导致施工质量下降。如果混凝土结构在使用过程中出现问题,就给企业造成经济损失。因此,建筑工程施工企业有关方面应高度重视,利用业余时间加强对施工人员的培训,让施工人员掌握基本操作要领,同时让施工人员树立安全生产意识,对施工过程的每个环节都认真对待,通过合理的方法,最大限度地减少气孔以及气泡的数量。

4 结束语

从基本原理来看,未经钝化处理的铝模中单质铝很容易与水泥发生化学反应,产生碱性离子以及各种气体,最终导致成型的混凝土产生脱皮等实际问题,影响整体结构的使用寿命。对此,建筑工程施工企业应高度重视,分析铝模混凝土表面产生脱皮以及气孔的实际原因,同时采取一系列措施确保混凝土成型面的光滑程度,在采用脱模剂以及进行振捣施工过程中,施工人员应高度负责,不断提升自身实际水平,最大限度地避免气孔的产生。相信在广大施工人员共同努力下,铝模混凝土结构气孔数量一定会大幅度下降,建筑整体质量也会全面提高。

参考文献

- [1] 卢佳林,蓝国平,牛子东,等.混凝土质量对铝模混凝土表观气孔的影响[J].新型建筑材料,2022,49(7):35-39.
- [2] 徐正.某铝合金模板现浇混凝土质量缺陷分析及整改措施[J].浙江建筑,2022,39(1):68-71.
- [3] 钟炳荣.铝模工艺混凝土质量控制研究与应用[J].建筑技术开发,2021,48(24):193-194.
- [4] 何伟强,王芳利.铝模工艺全混凝土外墙的混凝土 试验研究及应用[J].广东建材,2021,37(4): 5-8.
- [5] 方永浩,王锐,庞二波,等.水泥-粉煤灰泡沫混凝土抗压强度与气孔结构的关系[J].硅酸盐学报,2010,38(4):621-626.